2 Nonholonomic Mapping Principle for Classical and Quantum Mechanics in Spaces with Curvature and Torsion ∗

نویسنده

  • Hagen Kleinert
چکیده

I explain the geometric basis for the recently-discovered nonholonomic mapping principle which permits deriving laws of nature in spacetimes with curvature and torsion from those in flat spacetime, thus replacing and extending Einstein’s equivalence principle. As an important consequence, it yields a new action principle for determining the equation of motion of a free spinless point particle in such spacetimes. Surprisingly, this equation contains a torsion force, although the action involves only the metric. This force makes trajectories autoparallel rather than geodesic, as a manifestation of inertia. A generalization of the mapping principle transforms path integrals from flat spacetimes to those with curvature and torsion, thus playing the role of a quantum equivalence principle. This generalization yields consistent results only for completely antisymmetric or for gradient torsion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonholonomic Mapping Principle for Classical and Quantum Mechanics in Spaces with Curvature and Torsion

I explain the geometric basis for the recently-discovered nonholonomic mapping principle which permits deriving laws of nature in spacetimes with curvature and torsion from those in flat spacetime, thus replacing and extending Einstein’s equivalence principle. As an important consequence, it yields a new action principle for determining the equation of motion of a free spinless point particle i...

متن کامل

0 v 1 1 7 D ec 1 99 6 QUANTUM EQUIVALENCE PRINCIPLE

A simple mapping procedure is presented by which classical orbits and path integrals for the motion of a point particle in flat space can be transformed directly into those in curved space with torsion. Our procedure evolved from well-established methods in the theory of plastic deformations, where crystals with defects are described mathematically as images of ideal crystals under active nonho...

متن کامل

Quantum Equivalence Principle

A simple mapping procedure is presented by which classical orbits and path integrals for the motion of a point particle in flat space can be transformed directly into those in curved space with torsion. Our procedure evolved from well-established methods in the theory of plastic deformations, where crystals with defects are described mathematically as images of ideal crystals under active nonho...

متن کامل

Classical and Fluctuating Paths in Spaces with Curvature and Torsion

This lecture elaborates on a recently discovered mapping procedure by which classical orbits and path integrals for the motion of a point particle in flat space can be transformed correctly into those in curved space. This procedure evolved from well established methods in the theory of plastic deformations where crystals with defects are described mathematically by applying nonholonomic coordi...

متن کامل

Nonholonomic Mapping Principle for Classical Mechanics in Spactimes with Curvature and Torsion . New Covariant Conservation Law for Energy - Momentum Tensor ∗

The lecture explains the geometric basis for the recently-discovered nonholonomic mapping principle which specifies certain laws of nature in spacetimes with curvature and torsion from those in flat spacetime, thus replacing and extending Einstein's equivalence principle. An important consequence is a new action principle for determining the equation of motion of a free spinless point particle ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997